








p = bed material fraction of diameter d, y = depth of flow in
feet, t0' = boundary shear stress associated with sediment dia
meter, t0 = tractive force at the stream bed, tc = critical
tractive force, y = specific weight of water, p = density of
water and w = fall velocity of sediment.

In both of the above examples the sediment transport rate
is a unique function of the water discharge and sediment size
and the sediment yield was obtained by numerical integration.
It is further assumed that there is no limitation on the amount
of sediment available for transport.

Renard and Lane (1975) suggested that the mean and standard
deviation of the sediment size should be treated as random vari
ables in ephemeral streams because of substantial variations ob
served in these statistics.

Statistical equations have also been widely used for pre
dicting sediment yield. Generally, such models use equation(s)
relating sediment yield to one or more watershed and climatic
factors. Such models by their nature require relatively large
quantities of data on watershed parameters and on sediment dis
charge, and thus require considerable time and expense to col
lect adequate data. These models are widely used for problems
requiring sediment yields averaged over long periods. Their
widest use is for larger watersheds, including those used for
water supply. Such problems do not generally necessitate detailed
locations of sediment sources because the main interests are

storage reservoirs, delta formations, or channel capacity. In
addition to regression equations, the flow-duration, sediment-
rating curve procedure (ASCE, 1975) can provide adequate sedi
ment yield estimates for a particular watershed, but the results
are difficult to extrapolate to other watersheds, particularly
ungaged areas .

Notable examples of regression-type sediment yield models
in the U.S. are Flaxman (1972), Anderson (1976), Branson and
Owen (1970), Tatum (1963), Hindall (1976), and Herb and York
(1976).

Dendy and Bolton (1976) derived sediment yield equations
from reservoir deposition data for about 800 reservoirs in the
United States, representing watershed areas from 2.6- to 60,000-
km2 and runoff ranging from near zero to about 125 cm/year. In
areas where runoff is less than 2-in (5-cm), they derived the
equation:

S= 1280 Q0-46 (1.43 - 0.26 log A) (3-12)

and for other areas (runoff greater than 2-in)

S = 1958 e-°-055Q (1.43 _ 0.26 log A) (3-13)

where S = sediment yield (t/mi2/yr)
and Q = runoff (in)

A = watershed area (mi2).
The coefficient of determination for these two equations is 0.75.
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Although it may be unwise to use these equations for any speci
fic locations because of widely varying local factors, the equa
tions express a general relationship for sediment yields on a
regional basis.

Because of the dependence between the variates related to
sediment yield, multivariate analysis can be helpful. Wallis
and Anderson (1965) utilized multivariate techniques including
principle component analysis, and principle components regres-.
sion to develop a simplified prediction equation for sediment
yield. They pointed out that one of the limitations of statisti
cal approaches is that they cannot be used where changes will
occur due to man's activities and suggested that a better method
would be to develop a probabilistic model of watershed perfor
mance for computer simulation.

3.5 STOCHASTIC DESCRIPTION OF SEDIMENT YIELD

Consider the generalized watershed shown in Figure 3 with
processes distributed in time and space. Such a system is bound
ed on the bottom by rock, by an imaginary side surface, s, and
by the imaginary top surface, A. Input to such a system consists
of the precipitation flux to the surface A, denoted as the stoch
astic process £i(x, y, t). Rainfall excess, f,2(*> y» t) is the
amount of precipitation greater than that which infiltrates soil
and results in the surface runoff, ci(t), at the watershed out
let. Besides the runoff and sediment yield, ;2(t), outputs from
the system include the evapotranspiration, f^tx, y, t), and por
ous media flow through surface S, n(x, y, z, t).

Definition and Notation

Suppose that we have accurate instantaneous measurements of
total sediment transport at a stream draining a watershed with
area A. We shall denote this instantaneous rate of transport as
{^U). teT), where <;2(t) 1S tne total sediment transport rate
(MT~i) and T = {t >, o}. From physical considerations, we know
that c2U) is dependent (among other things) on the stream dis
charge, Ci(t), and the precipitation rate, ?i(x,y,t). The sedi
ment-yield process, Y2(t), can then be expressed as:

Y2(t) =/t C2(s)ds (3-14)
0

It is evident that Y2(t+At) >, Y2(t), therefore, the sediment
yield process represents a stochastic process of non-decreasing
sample functions. The distribution function of sediment yield,
frequently of interest in design problems, is

Ft(y) - P{Y2(t) * y) (3-15)

Let T(y) be the minimum time required for the accumulated sedi
ment yield to equal or exceed the amount y, or
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T(y) = infft.Yp(t) >. y) (3-16)

which is often called the first-passage time. The distribution
function for the first-passage time is

Gy(t) = P{T(y) .< t} (3-17)

Now P(T(y) > tl = P[Y?(t) <;. y)

Therefore,

Gy(t) =1- Ft(y) " (3-18)
Equations (3-14) through (3-18) are general and can be ap

plied to any situation. To develop useful stochastic descrip
tions of sediment yield, however, we must consider the structure
of the other physical processes controlling sediment yield. A
convenient way to do so is to consider the variables and para
meters, discussed by Foster and Meyer (1975), and to consider how
they might vary for plots, small watersheds (field size), and
large watersheds. This is essentially the same approach utilized
by Woolhiser and Blinco (1972).

Sediment Yield from a Plot

Case I in Table I corresponds to sediment yield from a plot
and is by far the simplest case. We will first consider some of
the approaches that might be used for this case, and then con
sider possible extensions to more difficult cases. Consider
sediment yield from the standard fallow plot, used by Wischmeier
and Smith (1960 and 1965), in developing the Universal Soil Loss
Equation. It is 22.1-m (72.6-ft) long, has a 9 percent slope,
and is tilled in the direction of maximum slope. From Table I
we see that the interrill particle delivery rate, Dj, can be as
sumed to be spatially constant, but, because it is dependent on
rainfall intensity, it will vary with time.

The transport capacity and detachment capacity of rills,
TCr and Dcr> vary in both space and time. A characteristic run
off response time (which might be the steady state storage on
the surface divided by the rainfall excess rate) might be a few
minutes.

We will be concerned with the four dependent stochastic
processes Ci(t), c2(t), ci(t), and c2(t), which represent the
rainfall rate, rainfall excess rate, runoff rate at the lower
boundary, and sediment transport rate at the lower boundary, re
spectively. Schematic sample functions of these processes are
shown in Figure 4. In the following, our notation will conform
as closely as possible to Woolhiser and Todorovic (1974), al
though we have introduced an additional process £2(t). Now, the
rainfall excess process, f.2(t), is primarily subordinate to the
rainfall process but also is related to runoff because infiltra
tion can take place during periods of no rainfall when water is
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still present on the surface. The sediment yield process is
subordinate to the other three processes, in a manner described
by Foster and Meyer (1972 and 1975) (discussed earlier). If we
assume that the rainfall process, Ci(t), 1s given, and the para
meters in an infiltration equation and an erosion equation are
known, it is possible to derive the runoff and sediment yield
processes by numerically solving these deterministic equations.
This simulation approach was utilized with models of varying
complexity by Negev (1967), Foster and Meyer (1975), Holton,
Yen, and Comer (1972), and Smith (1977) and could be utilized in
developing distribution functions for sediment yield from a
plot. Fleming (1975) presented a good general discussion of the
simulation approach.

Another approach would be to write the Foster and Meyer
steady-state sediment transport equation as a function of dis
charge and rainfall intensity. If short erosion records were
available or if the parameters could be estimated a priori, it
would be possible to integrate with respect to time and to esti
mate sediment yield for storm periods or any arbitrary longer
period.

As an example of the approach, the steady state equation
for sediment yield as a function of runoff rate and rainfall
rate for a plot of length, L , and slope, S,

BL h{t)l B L^l(t)^ G S.C2(t)-Cl ^(Od-d-^^d-expt-l^^y})^^ (3-19!

8g'
where d ={£)** CT Sf*:

y = specific weight of water
g = acceleration of gravity
f = Darcy-Weisbach friction factor

CT = coefficient in the relationship TcQ = C* t3/2, where
t is the bed shear

B = the coefficient in the relationship D^B Ci (t)2
and

Cp = the coefficient in the relationship Dc = Cp t3/2.
Equation (3-19) is a dimensional version of Foster and Meyers'
(1975) equations 11 and 12 and involves several simplifying
assumptions. By writing the sediment transport rate as a func
tion of time, it is assumed that unsteady, free surface flow
over a plot occurs as a series of steady states. It does pro
vide a direct linkage between the sediment yield process, the
runoff rate, and the rainfall rate. Obviously, it is only valid
when runoff Ci(t) > o.

A rainfall event is defined as any continuous period of
rainfall SiU) > o. A runoff event is any continuous period of
runoff, and a sediment yield event is associated with each run
off event. Associated with the itn rainfall event is the time
of ending, Ri. Similarly, Ti refers to the time of ending of
the itn runoff and sediment yield event.
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:ig. 3-3. Watershed-stochastic processes (modified from
Woolhiser and Blinco, 1975).
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Fig. 3-6. Rill losses for plot R-3, determined from microrelief
data, and interrill losses, computed as difference
between total R-3 erosion in Fig. 3-1 and rill losses.
Adapted from Meyer, Foster, and Romkens (1975).
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Fig. 3-7. Erosion of three mechanically shaped slopes from 5
inches of intense simulated rain. Crofton silt loam

(deep loess soil) 18-1/3 ft wide, 9 percent average
steepness (range of concave and convex 5 to 15 per
cent). (Adapted from Young and Mutchler, p. 169.)
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The total sediment yield for the vth event can be written
as

fT,
Yv =|" C:.(s)ds (3-20)

where c2(t) can be related to the rainfall and runoff processes

C2(t) =C, CittJ^fcjdJ.E^t)] (3-21)

onnr?,-ilC^WA/,l(t,J is the relationshiP given in brackets inequa cion IJ- IyJ.

Previous investigators have examined various relationships
between Y and various functions of the rainfall and runoff pro
cesses. Dragoun (1962) for example, found the relationships

Yy =a + bEn ; R? = 0.613

Yv =a+b(Q +qp); R? =0.811 (3"22>
where Ev is the kinetic energy of the rainfall event, Q is the
volume of storm runoff and qp is the peak rate of storm runoff.
Wischmeier (1959) found that'the sediment yield per event is
highly correlated with the product of the total rainfall kinetic
energy and maximum 30-min intensity for storms greater than 0 5
in (12.7 mm). Woolhiser and Blinco (1975) added a random vari
able representing the error term to the regression relationship,
i.e.,

Yv =K(Vv "m> +S 0-23)
where m is acoefficient, and Ev is an independent normally dis
tributed random variable with zero mean, and variance, o* They
treated the sediment yield per event as a function of the sum of
two independent random variables, the product of rainfall kine
tic energy, E , and the maximum 30-min intensity, I , and the
error term, e . v

While Foster and Meyer did simulate sediment transport and
compared predicted erosion with observed sediment losses, appar
ently no one has simulated a large series of erosion events from
a fallow plot to examine the form of the distribution function
of sediment yield per event. Such a distribution would depend
upon soil erosion parameters, the length and slope of the plot
and the rainfall and runoff characteristics.

Sediment Yield from a Small Watershed (Field)

A more complicated situation is Case II in Table I This
corresponds to a watershed about a few hectares in size. The
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rainfall erosion potential, expressed as Di, is uniform over the
area, as are the cover and management practices. This case dif
fers from Case I because the slopes are not uniform, and there
can be significant convergence of rills, so that the runoff
leaves the watershed in a concentrated flow.

Woolhiser and Blinco (1975) constructed a wery simple model
utilizing isochrones to reduce the problem to one dimension and
introduced p(r), the probability that a soil particle eroded
along an isochrone during an event will reach the mouth of the
watershed during that event. Because the time-varying sediment
transport was not considered, it seems unnecessary to introduce
a translation time. Contour lines and elevation could be used
more easily. Also, if an erosion model similar to that discus
sed earlier is used, the requirement for p(r) disappears. Con
sider the schematic drawing of the very small watershed in Fig-

dAure 5. The length of the contour is -g^-, where A is the surface

area. Let sv (z) be the average weight of soil per unit area
eroded (or deposited) during the vtn event.

s..(z) °t±
'z

v • I.
1 fLz [Dr(z,s) + D.(z,s)]vds (3-24)

where Dr(z,s) + D-j(z.s) are the rill and interrill erosion for
the vtn event, expressed as functions of the distance, s, along
the ztn contour, and L2 is the contour length. The total ero
sion during the vtn event is then

Y =f2"1 s(z) ^ dz (3-25)
v v dz

Jzo
where z0 is the elevation of the mouth of the watershed, and z
is the maximum watershed elevation.

The key to utilizing this relationship is in evaluating the
function sv(z). It is a random function, depending on the rain
fall intensity patterns, and infiltration characteristics of the
vth event. The only advantage in using this approach over a
straightforward simulation would be if certain regularities can
be found in the form of sv(z). If such regularities exist, it
may be possible to relate them to various geomorphic parameters
and rainfall and runoff characteristics. This could lead to
substantial savings of computer time.

One method of evaluating sv(z) would be to perform simula
tions with observed rainfall inputs, using a deterministic ero
sion model based on physical principles. An alternative would
be to make microrelief measurements after each of a series of
natural or simulated rainstorms.

Meyer, Foster, and Romkens (1975) presented data showing
erosion losses at a cross section versus distance downslope for
simulated rainfall on plots. Some of these data, for a simula
ted rainstorm of 6.35 cm/hr for 2-hr on a 3.65- x 10.66-m plot
are shown in Figure 6. The total erosion loss at each cross-
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section (which would be equivalent to sv(z)L(z)) is subdivided
into rill and interrill erosion. Therefore, the sums of each of
these functions divided by the width of the plot would be equiv
alent to sv (z). Both Dj(z,s) and Dr(z,s) would be much more
erratic for a small watershed than for a plot because the length
of slope and slope characteristics above each point on a contour
may vary considerably. Convergence of flow into rills may also
result in a "breakdown" and very rapid erosion at certain parts
of the watershed (Meyer, Foster, and Romkens (1975)).

The effect of concavity or convexity of the profile on
s0(z) is demonstrated by data presented by Young and Mutchler
(1969) (Figure 7). The rapid decrease of average depth of ero
sion with slope length for the concave slope suggests that both
erosion and deposition are occurring at the base of the slope,
but that erosion is still greater than deposition. Quite likely,
this function would become negative (net deposition) near the
mouth of the watershed for many cases.

Sediment Yield from a Large Watershed

If we consider the characteristics of upland erosion from
large watersheds (watersheds having spatial variability of pre
cipitation, soils, vegetation, and land use), as shown in Table
I, we see that all of the factors affecting sediment yield have
significant spatial variability, and that the characteristic
runoff response time may vary from hours to weeks. Streamflow
and sediment transport at the mouth of the watershed may occur
continuously, but surface runoff and erosion on the upland areas
will be intermittent. Much of the sediment eroded from an up
land area during a storm may be deposited in the stream channel
system or flood plain where it may subsequently be eroded by in
creasing discharges when the entire watershed is contributing to
streamflow (but upland erosion may be small).

The stochastic model developed by Murota and Hashino (1969),
is an example of an approach that develops a deterministic rela
tionship between sediment transport and daily rainfall, and then
develops distribution functions for total sediment yield in an
n-day period. Murota and Hashino assumed a simple linear rela
tion between daily rainfall and runoff so that the runoff re
sponse to rainfall of X, on the yth wet dav ]n a period of
length, n, can be given by

Q (t) = X h(t) (3-26)

where h(t) is the impulse response function. Then, knowing the
relationship between runoff and stage, they could calculate the
sediment yield due to the hydraulic forces on the channel by
utilizing a sediment discharge formula like that of Brown. Up
land erosion was ignored. By assuming independence between
events, they could then calculate a threshold amount of rainfall,
w, below which no sediment would move for an isolated event.
Also, given a sequence of n rainfall events in an N day period,
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they could calculate the runoff and sediment yield. It is not
quite clear from their paper if they used Monte Carlo simulation
or numerical integration and summation to obtain distributions
of sediment yield for nine periods within a calendar year.

Renard and Lane (1975) and Renard and Laursen (1975) used
simulation techniques to estimate distribution functions of sed
iment yield from semiarid watersheds. Basically, their model
consisted of a stochastic runoff model and a deterministic equa
tion to calculate sediment yield given a runoff hydrograph.
Because flow from the watersheds is intermittent, they could de
velop an event-oriented model specified by eight parameters that
were estimated from experimental data. Two variables were used
to describe the runoff season - - the starting date and the num
ber of runoff events. The temporal distribution was described
by two variables - - the time of day and the interval between
events. Each runoff event was described by the runoff volume
and the peak discharge. Hydrographs were assumed to be triangu
lar in shape and sediment transport rates were computed at three
or five points on the hydrograph, using Manning's equation to
calculate depth and Laursen's (1958) equation to calculate in
stantaneous sediment transport rates. No explicit provision was
made for upland erosion.

Smith, Fogel, and Duckstein (1974) used two empirical ex
pressions relating runoff to rainfall characteristics, and sedi
ment yield to both rainfall and runoff characteristics in devel
oping a stochastic sediment yield model for a semiarid watershed,
The relationship between runoff volume, Qv, and effective rain
fall per event, Xv, is given by the Soil Conservation Service
formula

«v= iirrsr (3-27)
V

where S is a watershed parameter. The peak discharge per event,
qv, is related to the runoff volume and the rainfall duration by
the equation

484 AQ

% •(a,D +a;) (3"28)
A. L

where Dv is the duration of the v event, A 1s the drainage
area (mi2), and aj and a2 are coefficients assumed constant for
a given drainage basin. The 484 coefficient is specific for the
English system of units as are the other terms.

The sediment yield per event is given by the Modified Uni
versal Soil Loss Equation (Williams, 1975).

Yy =95 (Qvqv)'56 KCPLS (3-29)
where Y = sediment yield in tons

qu = peak flow rate in cfs
Qv = runoff volume in acre-ft

v
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K = soil erodibility factor
C = cropping - management factor
P = erosion control practice factor
LS = slope length and gradient factors.

Thus the sediment yield per event is a function of the ran
dom variable Xv and Dv. They assumed that Xv and Dv were dis
tributed as a bivariate gamma distribution. The total seasonal
sediment yield could be calculated by assuming that the number
of events was Poissonian.

3.6 APPLICATION OF STOCHASTIC SEDIMENT YIELD MODELS

There are \/ery few instances in the literature in which
stochastic sediment yield models have been applied to practical
problems, even in the form of examples. Jacobi (1971) utilized
an elementary sediment yield model in evaluating the economic
worth of sediment yield data in a statistical decision framework,
He assumed that the annual sediment yield has a log-normal dis
tribution with mean \i and variance o2. He further assumed that
the annuaj series is independent. Because the estimates of u
and a2, X and s2, respectively, are not known with certainty, he
assume^ that the conditional joint distribution of u and a2,
given X, s2 and the number of years of record, n was given by

(ft)T
the following:

f(u,o2|n,X,s2) * exp { - n(u-X)

(s
CT

a

alt

n-1

2 ,.
exp{-

• ns?
9a2

•}

r(^)c2
(3-30)

A goal function, G(Q |n,a2), was then introduced. This

goal function is a penalty function and indicates the excess
cost of a project due to over or underdesign of sediment storage

QJj . The Bayes risk is the expectation of the goal function
with respect to f(u,a2).

The optimal design is to choose the alternative sediment
storage Q£ that minimizes Bayes risk:

f

R(0J min

nalt
GtQ^ln.o2) f(,i,a?)du da2 (3-31)

Thus the storage Q| is the Bayes solution. If the true values
of the parameters (pt, at2) were known, the information would

give Q , the alternative that gives the minimum variable risk

G(Q mi n

,alt
[G(QasU|V"a in (3-32)
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The opportunity loss (OL) is:

0L(Q*|ut,ot2) -G(Q*|Vot2) -G(Q^Mt,at2) (3-33)
The opportunity loss represents extra costs because the decision
was made without perfect knowledge.

The Expected Opportunity Loss (EOL) can then be defined as

EOL =(((G(Q*|u,o2) -G(Q>,o2)}-f(u,a2)du do2 (3-34)

where Qg is the design alternative that minimizes the goal func
tion for each particular set \i, a2.

The EOL is the expected value of perfect information and
the decrease in EOL as more information is obtained is a measure
of the reduction of uncertainty.

More information can be obtained by (1) use of all existing
primary data; (2) postpone project to obtain additional data;
(3) use of regression models to augment the primary data set.

As an example, Jacobi (1971) evaluated the worth of addi
tional data in the design of sediment storage for Cochiti Dam in
New Mexico. He found empirically that the expected opportunity
loss was inversely proportional to record length, n, and that
the expected marginal worth of 1 year's data was inversely pro
portional to n2.

Duckstein, Szidarovszky, and Yakowitz (1977) demonstrated
the conjunctive use of event-based simulation with a Bayesian
approach to decision making to make maximum use of a very lim
ited amount of data available to estimate sediment yield from a
semiarid watershed. In an example, they demonstrated that al
though the estimated mean sediment yield for the Charleston Dam
Site in Southern Arizona is 103.3 ac-ft, the optimal design
value (in the sense that it minimizes the Bayes Risk) is 143.6
ac-ft.

3.7' DISCUSSION AND CONCLUSIONS

In this section we should like to focus attention on three

questions: (1) Under what circumstances is it desirable to
have an estimate of the distribution function of seasonal or
annual sediment yield rather than only an estimate of its mean?
(2) What advantages, if any, does the stochastic approach have
over the more traditional approaches such as regression analysis
and multivariate analysis? (3) Is there a place for analytical
solutions to simplified models as compared to Monte Carlo simu
lation with more physically realistic models?

To answer the first question, we must reconsider the theo
retical and applied problems in which estimates of sediment
yield and its distribution are relevant. From the standpoint of
understanding geological processes such as denudation, geomor-
phologists are interested in the relative importance of extreme
or "catastrophic" events and more frequent events of smaller
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magnitude (Wolman and Miller, 1960). Knowledge of the mean sed
iment yield rate is not sufficient for this purpose. Applied
problems include the determination of sediment storage capacity
of a reservoir, the estimation of maintenance costs for removing
sediment from various hydraulic structures, evaluation of the
probability of severe erosion during a period of construction or
revegetation, transport of chemicals attached to sediment, and
design of sediment traps and debris basins.

The fact that in most cases the sediment capacity of a res
ervoir is set equal to the expected sediment yield for the de
sign life should not lead us to believe that we could not use
more detailed information. It is simply a commentary on the
rudimentary state of design procedures. As Jacobi (1971) points
out, and Duckstein, Szidarovszky, and Yakowitz (1977) demonstra
ted by an example, the expected sediment yield is not the opti
mal value and to estimate the optimal value one must have an
estimate of the distribution of sediment yield. For large res
ervoirs with a long time horizon, the exact form of the distri
bution of annual sediment yield is unimportant, because by the
central limit theorem, the sum of n annual sediment yields is
asymptotically normal. For smaller structures or for shorter
design periods, this approximation is not valid, and knowledge
of the distribution for annual or seasonal periods would be use
ful.

The essential difference between the stochastic approach
and the statistical methods described earlier is that the stoch
astic approach explicitly includes the time sequence of sediment
yield, and therefore is a more general formulation. For example,
once a stochastic model has been formulated and the parameters
identified one can readily consider functionals of the process
such as distributions of the first passage time, distribution of
T year sediment yields, distribution of the largest occurrence
in T years, etc. Stochastic models utilizing simulation can be
more physically realistic than statistical models, and can be
used (with caution) to examine effects of system changes. There
is still a definite need for statistical models in application,
but as a field for research it appears to have limited value.

From the earlier sections of this paper it should be read
ily apparent that in order to obtain mathematically tractable
models, we must greatly simplify the physical processes involved.
The question naturally arises - why should one consider analyti
cal models? -First, there may be some cases where the simplifi
cations clearly do not affect the accuracy of the interpretation
of model results. In these cases it would be foolish to use

simulation if analytical approaches are available. However,
where there are some questions regarding the effects of simpli
fication, one frequently must carry out simulations to compare
the alternative models. In these circumstances the analytic
model would be worthwhile only if it provided some insight which
could not be obtained from a simulation model of comparable ac
curacy or if it provides a means of generalizing or regional
izing which was not available from the simulation model. It is
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Table I. Characteristics of Sediment Yield Models

Sediment Yield Case I Case II Case III

Variables Plot Small watershed Large watershed

D. D(t) D(t) D(x,y,t)

Delivery rate
of particles
detached by
interrill ero

sion uniform uniform spatially varied

Tcr T(x,t) T(x,t) T(x,y,t)
Transport
capacity varies varies spatially
of rills downslope downslope varied

Dcr D(x,t) D(x,t) D(x,y,t)
Detachment

capacity varies varies spatially
of rills downslope downslope varied

Characteristic
runoff response min min to hrs hr to weeks

3-20


